Caspase-3 belongs to a family of highly conserved cysteine proteases that mediate the course of apoptotic cell suicide. It is recognized that ovarian follicular atresia is associated with apoptosis, a process that has been characterized mainly in larger antral follicles. The aims of this study were to investigate the expression of caspase-3 in the mouse ovary, and determine whether active caspase-3 is present within smaller follicles, which may constitute the resting pool. The inactive enzyme was expressed as a 32 kDa band on a western blot of tissue extracts, whereas the active form was localized immunohistochemically. Bromodeoxyuridine (BrdU) was administered to mice \((n = 7)\) during a 12 h period and subsequently localized to identify potentially quiescent follicles. Measurements of BrdU-positive cells in the mouse ovary were extrapolated with data obtained by morphometric analyses of small follicles using the nucleator technique. BrdU was incorporated into the granulosa cells of follicles regardless of size and the number of cells they contained, but was absent in a large proportion \((89\%)\) of small, single layered follicles. Active caspase-3 was localized to both the oocyte and granulosa cells of follicles that were considered to be undergoing atresia, but was not localized to the granulosa cells of any small, single layered follicles. The results of this study indicate that, in small follicles, granulosa cell proliferation occurs independently of the size of follicles and the number of constituent cells, and that follicles of this type may be inherently less susceptible to the normal physiological factors that induce atresia.

The process of atresia can be recognized in follicles that have reached the multilayered–small preantral stage of development, a period when constituent granulosa cells express gonadotrophin receptors (Findlay and Drummond, 1999). Several reports indicate, however, that follicular atresia occurs at all stages of development, including smaller follicles classified as resting (Baker, 1963; Gougeon, 1996; Morita and Tilly, 1999; Perez et al., 1999), which are not under the direct developmental control of gonadotrophins. As apoptosis is so prevalent in the ovary, some protective mechanisms may predominate in follicles that remain dormant throughout the course of the reproductive lifespan, thus making them more resistant to atresia.

Recruitment of healthy, resting follicles, however, involves the transformation of a squamous layer of pre-granulosa cells to a cuboidal phenotype (Eppig, 1991). It is often very difficult to distinguish the squamous and cuboidal cells morphologically in mice and, therefore, to
determine whether granulosa cell division has started. A study
in sheep (Lundy et al., 1999) showed that proliferating
nuclear antigens for DNA replication, is
detectable in flattened granulosa cells of type 1 follicles.
Similarly, Hirshfield (1991) demonstrated that flattened
granulosa cells of rat follicles incorporate [3H]thymidine,
indicating that granulosa cell proliferation precedes
differentiation.

The aim of the present study was to use morphological
characteristics, coupled with the incorporation of a thymidine
analogue, bromodeoxyuridine (BrdU), to identify follicles
considered to be quiescent, and to ascertain whether these
follicles could be correlated with a biochemical marker of
apoptosis, namely active caspase-3. This study highlights
some important attributes relating to the growth and atresia
of small follicles in the mouse ovary.

Materials and Methods

Animals

Normal outbred C57BL/6 mice were purchased from the
Department of Laboratory Animal Sciences, University of
Otago, Dunedin. The mice were housed under standard (12 h
light:12 h dark) conditions and provided with commercial
pelleted food and water ad libitum. Mice were killed by
cervical dislocation and ovaries designated for morphometric
analyses were collected from mice at 1 week (n = 5) and 6
weeks of age (n = 6). Caspase-3 expression and BrdU
incorporation were examined in ovaries removed from
separate groups of mice at 6 weeks of age (n = 6 and 7,
respectively). The experimental use of these animals was
approved by the University of Otago Animal Ethics
Committee AEC No 73/99, 35/01.

Morphological identification of small ovarian follicles

Whole ovaries were fixed in Bouin’s fluid, dehydrated
and polymerized in glycolmethacrylate resin. Blocks were
positioned isotropically using the ‘orientator’ (Mattfeldt et al.,
1990). Serial sections, 30 μm in thickness, were generated
using systematic random sampling strategies and then
stained with periodic acid–Schiff. Follicles classified as
small according to Pedersen and Peters (1968), and the
absence of a discernible zona pellucida and/or thecal layer,
were selected randomly under a × 100 oil immersion
objective and viewed under an Olympus AX70 microscope.
Follicle and oocyte diameters were recorded when the
sections were focused through the oocyte nucleolus (SON)
and viewed under an Olympus AX70 microscope. As the
image was focused through the section (at a predefined
depth), only granulosa cell nuclei that came into focus but
were not in focus at the bottom of the section were counted.

Immunohistochemistry

All ovaries retrieved for immunohistochemistry were
fixed in freshly prepared 4% (w/v) paraformaldehyde in
0.1 mol PBS 1–1 and processed overnight in paraffin wax. A
systematic random sampling strategy (across all tissue) was
used to yield > 130 and 100 sections of 4 μm for BrdU
and caspase-3 analysis, respectively. In brief, the paraffin
wax was removed and the sections rehydrated and exposed
to antigen unmasking in 0.1 mol Tris–EDTA buffer 1–1 (pH 7.4)
with 5% (w/v) urea by heating for 20 min in a Sharp 1000
watt microwave oven for caspase-3 or 0.1 mg proteinase
K ml–1 (Sigma) in 0.1 mol Tris–HCl buffer 1–1 (pH 10)
with 5% (w/v) urea for 1 h with 2 μg rabbit anti-active
caspase-3 monoclonal antibody ml–1 (Research Diagnostics
Inc, Flanders, NJ) followed by biotinylated anti-rabbit IgG
(Amersham Pharmacia Biotech, Bucks) for caspase-3
immunostaining. Sections were incubated with 1:50
anti-BrdU (Dako, Carpinteria, CA) followed by biotinylated
anti-mouse IgG (Amersham) for BrdU detection. Signals
were amplified with streptavidin–biotinylated horseradish
peroxidase complex (Amersham), developed with 3-amino-
9-ethylcarbazole (Sigma), counterstained with haematoxylin
and analysed under a light microscope. In the control
sections, the primary antibody was replaced with an
equivalent amount of primary antibody dilution buffer or Ig
isotype serum.

Western immunoblot analysis

Pairs of whole mouse ovaries were homogenized at 4°C
in lysis buffer consisting of 50 mmol Tris–HCl 1–1 (pH 7.5),
5% (w/v) sodium dodecyl sulphate, 5% (w/v) glycerol, 6 mol
urea 1–1 and 10 μl protease inhibitor cocktail (Sigma). Homogenates were centrifuged at 13 000 g for 30 min and
the supernatants collected. Total protein was estimated with
the Pierce BCA protein assay (Rockford, IL). Thirty
micrograms of protein was loaded on to a 10% (w/v)
SDS-polyacrylamide gel and separated under reducing
conditions using a BioRad MiniProtean II unit. Proteins were electrotransferred with a BioRad Mini TransBlot cell on to a nitrocellulose membrane, blocked with 3% (w/v) non-fat milk powder and 0.05% (v/v) Tween 20, and probed with 1:100 anti-caspase-3 polyclonal antibody (Santa Cruz Biotech, Santa Cruz, CA) for 3 h at room temperature. Membranes were incubated with an anti-goat horseradish peroxidase conjugated secondary antibody (Sigma) and developed with ECL chemiluminescence according to the manufacturer’s instructions (Amersham). This procedure was repeated three times to confirm consistency within and between samples.

Statistical analysis

The data for follicle characteristics were represented as geometric means and ranges. All follicles within a treatment group were pooled for statistical purposes and therefore animal-to-animal variation was not considered. Relationships between the number of granulosa cells and oocyte or follicle diameters were analysed by regression analyses.

Results

Follicle characteristics

Small follicles were characterized by morphological measurements (Table 1). The number of constituent granulosa cells per follicle was consistent between the two age groups as confirmed by both the ‘nucleator’ and the number of granulosa cells in the section through the oocyte nucleolus. The number of granulosa cells recorded in the SON of small follicles was \(\leq 18 \) in the postnatal and peripubertal age groups, which is consistent with the classification of small follicles reported by Pedersen and Peters (1968).

The size of follicles (diameter of oocytes and follicles) was significantly smaller in the peripubertal age group compared with the postnatal age group \((P < 0.001) \). There was a positive correlation between the number of granulosa cells and the size of the follicle (Fig. 1), which was independent of age \((P < 0.001) \). The diameter of the oocytes of all follicles measured showed a positive correlation with the diameter of their constituent follicles \((r^2 = 0.91) \).

BrdU incorporation

In all animals studied, BrdU was incorporated into the nuclei of both granulosa and thecal cells of growing follicles, including a proportion \((18 \text{ of } 178; 10\%; \text{ Table 1}) \) of

Table 1. Characteristics of small follicles in the mouse ovary

<table>
<thead>
<tr>
<th></th>
<th>Total number of small follicles studied</th>
<th>GCSON</th>
<th>Nucleator</th>
<th>Diameter of oocyte (µm)</th>
<th>Diameter of follicle (µm)</th>
<th>Number of granulosa cell layers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Postnatal (1 week)</td>
<td>59</td>
<td>4.1</td>
<td>26.6</td>
<td>23.5</td>
<td>31.7</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>(0, 12)</td>
<td>(0, 106.3)</td>
<td>(16.4, 39.4)<sup>a</sup></td>
<td>(18.5, 52.7)<sup>a</sup></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peripubertal (6 weeks)</td>
<td>70</td>
<td>4.0</td>
<td>22.1</td>
<td>17.5</td>
<td>25.6</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>(0, 18)</td>
<td>(2.5, 136.5)</td>
<td>(9.7, 36.2)<sup>b</sup></td>
<td>(14.8, 57.6)<sup>b</sup></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BrdU-positive</td>
<td>18/178</td>
<td>N/A</td>
<td>N/A</td>
<td>>14.5</td>
<td>>23.3</td>
<td>2</td>
</tr>
<tr>
<td>Active caspase-3-positive</td>
<td>0/161</td>
<td>N/A</td>
<td>N/A</td>
<td>Not measured</td>
<td>Not measured</td>
<td>2</td>
</tr>
</tbody>
</table>

GCSON: values for the number of granulosa cells in the section through the oocyte nucleolus; nucleator: the total number of granulosa cells per follicle determined by the nucleator; BrdU: bromodeoxyuridine; N/A: not applicable.

The GCSON, nucleator, oocyte and follicle diameters are presented as geometric means and ranges (in parentheses).

^{a,b}Values within the same column with different superscripts are significantly different \((P < 0.001) \).

![Fig. 1. Relationship between the diameter of small, single-layered follicles and the number of granulosa cells per follicle as determined by the ‘nucleator’ in mice. The diameters of bromodeoxyuridine (BrdU)-positive follicles (sectioned through the oocyte nucleolus) are represented along the y axis by diamond symbols.](image-url)
those classified as small (Fig. 2). Measurements of BrdU-positive small follicles taken throughout a range of sizes show that (Fig. 1) BrdU incorporation was detected in follicles of any size and containing any number of granulosa cells.

Expression of caspase-3

The inactive pro-form of caspase-3 was detected as a 32 kDa band in western blots of tissue extracts of mouse ovary (Fig. 3). The active form was localized in the granulosa cells of larger preantral and small antral follicles; staining was also evident in some oocytes of small preantral follicles (Fig. 4) and luteal cells of regressing corpora lutea (Fig. 4). Staining was never observed in thecal cells, including those that surrounded atretic follicles. Active caspase-3 was detected in follicles that were not considered to be morphologically atretic (that is, follicles in which no pyknotic or abnormal nuclei were observed). In some preantral follicles, an enlarged immunopositive oocyte was often associated with underdeveloped granulosa cell layers and an absence of surrounding thecal cells. Active caspase-3 was never found in the granulosa cells of any small, single-layered follicles (Table 1) or large preovulatory follicles with healthy granulosa cells (Table 2). Immunostaining was not observed in the control sections, whether the primary antibody was replaced with dilution buffer or with Ig isotype serum.

Discussion

The main aim of the present study was to investigate the occurrence of atresia in non-growing follicles. It was necessary to discriminate quiescent follicles from follicles that had already started to develop by correlating morphological characteristics with granulosa cell proliferation. It was apparent that the number of granulosa cells was directly proportional to the size of the follicle, and that BrdU incorporation into granulosa cells of small follicles indicated evidence of granulosa cell proliferation. The fact that BrdU was incorporated into small follicles of any diameter indicates that BrdU incorporation occurs independently of both follicle size and number of granulosa
cells. Although small follicles are formed shortly after birth in mice (Hirshfield, 1991), the size and number of granulosa cells when the follicle is arrested may not have an effect on the order of follicle recruitment after birth.

Both the oocyte and follicle diameters were smaller in peripubertal mice compared with postnatal mice. This change in size was not proportional to the number of constituent granulosa cells indicating that there is a fixed number of cells in the small follicles, despite the fact that size may be influenced by larger adjacent structures, such as corpora lutea or developing follicles. Consequently, it is likely that the supply of small follicles in the mouse ovary exists as a resting pool rather than a cohort of slow-growing follicles, in which case these follicles would have been likely to show an increase in the number of granulosa cells per follicle as the ovary matured. Although most (>89%) of the small follicles that did not incorporate BrdU could be construed as resting, it is equally likely that BrdU-positive cells were simply not selected in the 5 μm plane of section. Furthermore, it is also possible that not every dividing granulosa cell passed through the S-phase of the cell cycle during the 12 h period examined. A previous study on follicle cell proliferation in the rat ovary using [3H]thymidine infusion (Hirshfield, 1989) indicated that the duration of the cell cycle in granulosa cells may exceed 7 days. In the same study, it was also noted that a proportion of very small follicles (with <4 granulosa cells in a cross-section) had at least one labelled cell. This finding further supports the contention that the smallest follicles in the rodent ovary have the potential to develop irrespective of size or number of cells.

Under normal physiological conditions, morphological signs of atresia, such as nuclear pyknosis in large follicles, can easily be identified by the relatively large number of constituent granulosa cells and the propensity that these follicles have to be eliminated. Conversely, atresia of small follicles is more difficult to assess given their smaller size and considerably smaller number of constituent cells and, therefore, the requirement for an accurate marker of follicle cell apoptosis other than morphological criteria is essential and remains to be determined in small follicles. The active form of caspase-3 has been used as a marker for cell death in a number of tissues, particularly in tissues that show signs of degeneration as a consequence of disease or ageing (Hartmann et al., 2000). Although localization of active caspase-3 was found to be a useful indicator of follicular atresia in larger follicles of the mouse ovary, active caspase-3 was never observed in granulosa cells of small follicles. These results are consistent with those of Matikainen et al. (2001) who also did not detect the processed form of caspase-3 in small follicles of the human ovary. Little is known about the half-life of biologically active caspase-3 in the ovary; however, given the number of small follicles observed, it is unlikely that the period of caspase-3 activation in either the oocyte or granulosa cells of small follicles was too short to be detected at any point. Lee et al. (2000) showed that primordial follicle degeneration that is induced by high doses of γ-irradiation proceeds at a much faster rate than that of larger follicles, and thus the time course of atresia of small quiescent follicles may be too rapid to be detected by current methods.

Morphologically ‘atretic’ primordial follicles have been described (Kondo et al., 1996; Perez et al., 1999; Lee et al., 2000). However, studies investigating the demise of primordial follicles using in situ TdT-mediated dUTP nick-
end labelling (TUNEL) or the localization of other apoptotic components have not been well documented in the normal ovary. Devine et al. (2000) discovered that, in the rat ovary, atresia of primordial follicles, as determined by ultrastructural observations, involved the loss of the oocyte, which was atypical of apoptosis and, thus, proposed that the mechanism of oocyte death may operate in a different manner to that of granulosa cell apoptosis. Similarly, Bergeron et al. (1998) described the functional requirement of caspase-2 for oocyte apoptosis, and this was supported by the findings of Matikainen et al. (2001), who determined that oocyte death was unaffected in caspase-3 gene knockout mice. In the present study, active caspase-3 was localized in several oocytes of preantral follicles, indicating that the integrity of this pathway may still be preserved and activated under certain conditions, although the details of these conditions remain to be elucidated.

Processed caspase-3 may also be found in luteal cells of degenerating corpora lutea. It is well established that luteolysis occurs via apoptosis of luteal cells (Zeleznik et al., 1989), which is in agreement with the evidence that cells of this origin are activating caspase-3 during apoptosis, and that this pathway of execution is conserved subsequent to differentiation. Furthermore, in all atretic follicles observed, active caspase-3 was never detected in cells of thecal origin, which have been shown to undergo apoptosis during follicular atresia in other species, including sheep (O’Shea et al., 1978), rats (Foghi et al., 1997) and humans (Matikainen et al., 2001), implying that apoptosis of cells of thecal origin is limited or may occur via a different mechanism in mice.

In summary, the results of the present study indicate that, in the mouse ovary, the pool of primordial follicles considered to be in a quiescent state are difficult to identify by morphology alone. Although BrdU may be incorporated into granulosa cells of follicles from a range of sizes, it is possible that these cells are spontaneously cycling independent of follicular growth and, therefore, maintaining a constant number of healthy support cells for the oocyte. However, this process is unlikely given that caspase-3 activity was not observed in these cells in any of the sections studied. Therefore, this finding indicates that the mechanism by which small follicles undergo atresia is independent of caspase-3 activation, or that these follicles express an increased resistance to the physiological factors that normally induce apoptosis.

![Fig. 4. Immunostaining of active caspase-3 in the mouse ovary. (a,b,d) Follicles with many immunopositive cells were considered to be at the late stages of atresia, whereas (c) follicles with few positive cells may indicate early atresia. (a) The arrow shows an immunopositive oocyte; (b) the hatched line shows a regressing corpus luteum and (d) the arrowhead shows a small, single-layered immunonegative follicle. Scale bar represents (a,b,c) 100 μm and (d) 50 μm.](image-url)
The authors would like to thank S. J. Bunn for advice with western blotting and P. Garry for technical assistance. This work was supported by a New Zealand Lottery Health Grant.

References

Bagger PV, Bang L, Christiansen MD, Gundersen HJ and Mortensen L (1993) Total number of particles in a bounded region estimated directly with the nucleator: granulosa cell number in ovarian follicles American Journal of Obstetrics and Gynecology 168 724–731

Eppig JJ (1991) Intercommunication between mammalian oocytes and companion somatic cells Bioessays 13 569–574

Findlay JK and Drummond AE (1999) Regulation of the FSH receptor in the ovary Trends in Endocrinology and Metabolism 10 183–188

Gougeon A (1996) Regulation of ovarian follicular development in primates: facts and hypotheses Endocrine Reviews 17 121–155

Hirshfield AN (1989) Granulosa cell proliferation in very small follicles of the mouse ovary Journal of Reproduction and Fertility 90 81–90

Sakamaki K, Yoshiha H, Nishimura Y, Nishikawa S, Manabe N and Yonehara S (1997) Involvement of Fas antigen in ovarian follicular atresia and luteolysis Molecular Reproduction and Development 47 11–18

Received 7 February 2002.
First decision 8 April 2002.
Revised manuscript received 7 July 2002.
Accepted 16 July 2002.